Segmental Neural Net Optimization for Continuous Speech Recognition
نویسندگان
چکیده
Previously, we had developed the concept of a Segmental Neural Net (SNN) for phonetic modeling in continuous speech recognition (CSR). This kind of neural network technology advanced the state-of-the-art of large-vocabulary CSR, which employs Hidden Marlcov Models (HMM), for the ARPA 1oo0-word Resource Management corpus. More Recently, we started porting the neural net system to a larger, more challenging corpus the ARPA 20,Ooo-word Wall Street Journal (WSJ) corpus. During the porting, we explored the following research directions to refine the system: i) training context-dependent models with a regularization method; ii) training SNN with projection pursuit; and ii) combining different models into a hybrid system. When tested on both a development set and an independent test set, the resulting neural net system alone yielded a perfonnance at the level of the HMM system, and the hybrid SNN/HMM system achieved a consistent 10-15% word error reduction over the HMM system. This paper describes our hybrid system, with emphasis on the optimization methods employed.
منابع مشابه
A Hybrid Neural Net System for State-of-the-Art Continuous Speech Recognition
Untill recently, state-of-the-art, large-vocabulary, continuous speech recognition (CSR) has employed Hidden Markov Modeling (HMM) to model speech sounds. In an attempt to improve over HMM we developed a hybrid system that integrates HMM technology with neural networks. We present the concept of a "Segmental Neural Net" (SNN) for phonetic modeling in CSR. By taking into account all the frames o...
متن کاملContinuous Speech Recognition Using Segmental Neural Nets
We present the concept of a "Segmental Neural Net" (SNN) for phonetic modeling in continuous speech recognition. The SNN takes as input all the frames of a phonetic segment and gives as output an estimate of the probability of each of the phonemes, given the input segment. By taking into account all the frames of a phonetic segment simultaneously, the SNN overcomes the wellknown conditional-ind...
متن کاملImproving State-of-the-Art Continuous Speech Recognition Systems Using the N-Best Paradigm with Neural Networks
In an effort to advance the state of the art in continuous speech recognition employing hidden Markov models (HMM), Segmental Neural Nets (SNN) were introduced recently to ameliorate the wellknown limitations of HMMs, namely, the conditional-independence limitation and the relative difficulty with which HMMs can handle segmental features. We describe a hybrid SNN/I-IMM system that combines the ...
متن کاملReplicator Neural Networks for Outlier Modeling in Segmental Speech Recognition
This paper deals with outlier modeling within a very special framework: a segment-based speech recognizer. The recognizer is built on a neural net that, besides classifying speech segments, has to identify outliers as well. One possibility is to artificially generate outlier samples, but this is tedious, error-prone and significantly increases the training time. This study examines the alternat...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کامل